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ABSTRACT 
The VirHKey is a new text entry method for mobile devices using 
a simple Unistroke-like alphabet. Gesture recognition is 
accomplished not through pattern recognition but through 
sequences of flicks with low required angular accuracy: 2π/5 in 
radians. This means that the full stroke path is unimportant and 
recognition is highly deterministic, enabling good accuracy. All 
during the interaction, an optional visual feedback is provided at 
least for the learning stage. This is done with a focus and context 
display based on the hyperbolic geometry. To illustrate the 
possibilities of the VirHKey, a prototype application was 
developed and usability tests demonstrated the overall good 
performances of the proposition with a text entry rate from 18 to 
25 words per minute and a high satisfaction of users. 

Categories and Subject Descriptors 
H.5.2 [User Interfaces]: Evaluation/methodology, Input devices 
and strategies, Interaction styles. 

General Terms 
Performance, Design, Experimentation, Human Factors. 

Keywords 
Focus and context, hyperbolic geometry, pen-based interaction, 
gesture keyboard. 

1. INTRODUCTION 
With small mobile devices, classical keyboards are difficult or 
even impossible to use. In this case, software keyboards give 
many alternative solutions [10]. We can distinguish several kinds 
of software keyboards from the interaction technique point of 
view. In this paper, we focus on gesture keyboards: the interaction 
is done by gestures with a pen and each gesture is interpreted as a 
character or a command. Usually, the recognition is based on the 
Latin alphabet or a dedicated one. In the first case, the recognition 

is difficult and many errors can occur. Thus, the shapes of 
characters are often simplified but gestures remain complicated 
and user must use a gesture sheet to memorize them at least at the 
learning stage. In the second case, a new alphabet is proposed. 
Gestures can be simpler as in Unistroke proposition to improve 
speed and reduce errors during recognition but users must invest 
the required effort to learn this new alphabet. A visual feedback 
helps sometimes user to do gestures as in QuikWriting proposition 
but the gestures become more complicated and it is difficult not to 
use the visual feedback. Thus, even if these keyboards have 
proved to be natural and efficient in some classes of tasks [10], 
there are many situations where the users have difficulties to learn 
it or to use it. 

We propose a new concept of gesture keyboard as simple as the 
Unistroke one while providing a visual feedback. This truly 
optional visual feedback helps user to learn progressively and 
swiftly the alphabet at the learning stage. In next sections, we 
present the existing propositions in order to show their 
possibilities and their limits. Among the many encountered 
difficulties, it is necessary to take into account the space available 
to visualise the keyboard, the learning time and the accuracy 
which is needed in gesture interactions. Then we present the 
VirHKey project from the hyperbolic tool to the gesture 
interaction techniques passing by the characters layout. Next, the 
usability tests are described followed by the results. Finally, we 
present our conclusion. 

2. GESTURE KEYBOARDS 
In gesture keyboards, the interaction is mainly done with a pen on 
a tactile surface. We can distinguish two categories: the symbolic 
keyboards and the target keyboards. 

2.1 Symbolic keyboards 
A symbolic keyboard uses gesture recognition to associate a 
gesture to one and only one character. Unfortunately, the Latin 
alphabet remains complicated: it needs always high computation 
capacities and good accuracy in the gesture. Each symbolic 
keyboard introduces a simplified alphabet. With Unistroke, a 
character is obtained with only one gesture [7]. The alphabet was 
designed for the simplicity to ease the learning, to minimize the 
ambiguity between gestures and to improve speed. The most 
frequent characters are associated to the simplest gestures (figure 
1). No comparative study has been undertaken but an idealistic 
text entry rate of 34 wpm (words per minute) was reported. 
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Figure 1. Samples of Unistroke and Graffiti 2 alphabets. 

Graffiti was introduced by Palm Computing for its PDAs [1]. The 
majority of the characters are obtained with only one gesture but 
not all as the ‘X’ (figure 1). It was clearly designed to reduce the 
learning time: the gestures are close to the Latin alphabet but they 
are much more complicated than the Unistroke ones. [6] reported 
a text entry rate from 7 wpm (novice) to 21 wpm (expert) and 
reported a 9% errors rate for both novice and expert users. At this 
time Graffiti is a success and users appreciate the ease of learning 
even to the prejudice of performance. Thus the new gesture 
keyboards have now to show their ease to learning in comparison 
to Graffiti. 

 

Figure 2. Samples of EdgeWrite alphabet. 
The last keyboard described here is EdgeWrite. It was conceived 
to simplify the recognition and to need lower accuracy from the 
user [16]. Its alphabet is Unistroke and it was designed from the 
order by which the user passes in the four corners of a square. The 
gesture looks like the corresponding Latin character (figure 2). 
The errors are reduced because the interface is tangible: gestures 
are done in a seizure guide which constraints the pen. [16] 
reported a 18% better accuracy than Graffiti for novice users with 
no significant difference in speed. 

2.2 Target keyboards 
A target keyboard uses gestures to reach a target or a zone 
assigned to a character. All the characters are presented to the 
user but if the display is incomplete, the characters are distributed 
in different pages. A visual feedback is provided but after few 
hours of practice, the visual feedback can become unnecessary. 
From the interaction point of view, we distinguish the static 
selection and the dynamic selection. 

 

 
Figure 3. The layouts of T-Cube and Quikwriting. 

With the static selection, the gesture associated to a character is 
always the same. For example, T-Cube [15] uses hierarchic pie-
menus (figure 3). The gesture, a flick, uses a departure point and a 
direction. The departure point is done in one of the first pie-menu 
to indicate which sub pie-menu is concerned. The direction 
indicates which character to select in the sub pie-menu. The 
gestures are simple but an accuracy of 2π/8 in radians is required. 
[15] indicated that reasonably fast text entry can be achieved. One 

subject achieved 21 wpm but it appears difficult to learn. 
Quikwriting works with continuous gestures on a 3×3 grid [13]. 
Characters are entered with gestures that begin in the centre cell 
(figure 3). User moves to the cell which contains the desired 
character. If the desired character is at the centre of the cell, it is 
sufficient to go back directly to the centre cell (for example ‘i’). 
On the contrary, if the user goes to one of the two adjacent cells 
before to go back to centre cell, he obtains the next character in 
the direction of the chosen adjacent cell (for example ‘u’). 
Similarly, in the corners which contain 5 characters, user can go 
in the second adjacent cells before to go back in the centre cell to 
obtain  the second next character in the direction of the chosen 
adjacent cell (for example ‘k’). Letters that occur more frequently 
have the shortest gestures which can be done with various 
devices. With a pen, [8] reported a text entry rate always 
improving of 17 wpm (expert) with errors correction. 

 
Figure 4. The Dasher layout. 

With the dynamic selection, the gesture which is associated to a 
character varies according to the state of the keyboard. A visual 
feedback is necessary. For example, in Dasher [15], the user 
points where he wants to go and the display zooms where he 
points. The world is painted with characters, so that any point he 
zooms in corresponds to a piece of text. The user chooses what to 
write by choosing where to zoom. Figure 4 shows the writing of 
"hello_how_are_you". Of course, it requires sustained visual 
attention from the user. For efficiency, Dasher uses prediction 
rules and [9] reported text entry rate from 25 wpm (novice) to 35 
wpm (expert) with a mouse. 

3. THE VirHKey PROJECT 
The VirHKey project for VIRtual Hyperbolic KEYboard uses the 
pentagonal tiling of the hyperbolic space. Its aim is to provide an 
alphabet as simple and efficient as Unistroke while helping user 
with a visual feedback at the learning stage. To be easily adapted 
to mobile devices, the visual feedback is based on the focus and 
context technique to use little space on screen. In next sections, 
we present the hyperbolic tool of the TYPHOON project which is 
used as the basis of the VirHKey. Then, we propose a characters 
layout before to describe the gesture technique. 

3.1 Hyperbolic tool of the TYPHOON project 
In the TYPHOON project (Tiling of the hYperbolic Plane for 
Human-cOmputer inter-actiON) we developed a generic focus 
and context tool by using the hyperbolic geometry. Even if this 
technique has been already often used, it was never by using the 
tiling of the hyperbolic plane. 



3.1.1 Hyperbolic geometry and the tiling 
Hyperbolic geometry is the result of replacing the parallel axiom 
of Euclidean geometry with the alternative of axiom that through 
a given point there are at least two lines parallel to a given line. 
We shall use Poincaré’s disc model: the open unit disc U of the 
Euclidean plane constitutes the points of the hyperbolic plane. 
Lines are diameters or arcs of circles which are orthogonal to the 
border of U. The distortion of the mapping between the infinite 
hyperbolic plane and the open disc gives a good way to visualise 
data. A regular tiling is a splitting of the space with a unique 
generator polygon by translation or by reflection in sides to cover 
the entire space. Figure 5 shows the pentagrid which is generated 
from a central regular pentagon with an interior angle of π/2 in 
radians. 

 
Figure 5. The pentagrid. 

The hyperbolic plane is split into basic regions Ri generated by 
the reflection of the central polygon into the common sides. This 
splitting generates a tree: nodes are pentagons and arcs are the 
reflections. This tree is a spanning tree of the neighbourhood 
graph: additional connections are represented in bold and dotted 
lines (figure 6). 
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Figure 6. The tiling tree and the neighbourhood graph. 
As it was first shown [11], each pentagon of a region can be 
identified by a unique number from the standard Fibonacci 
numbering. By adding the number of the region, we number all 
pentagons with a unique couple w : r with r the region and w the 
Fibonacci number in this region. By extension, the central 
polygon is 0 : 0. From this numbering, we can compute the 
neighbourhood of all pentagons and explore the tiling without 
additional data structures. Details can be found in [3] [4] [5] [12]. 

3.1.2 Hyperbolic tool for visualisation 
The tiling can be used to visualize and to explore various types of 
data. The main difficulty is to find how to distribute data in the 

tiling. We note T the mapping function as T (w, r) gives the data 
associated to pentagon w : r. The first technique to visualise the 
data is the absolute visualisation: the data associated to pentagon 
w : r is displayed in pentagon w : r. Figure 7 shows the result: the 
data is just the number of the polygon and it is displayed by “w:r” 
with w in decimal. In specific applications, data will be displayed 
differently: text, colour, etc. 

 
Figure 7. Absolute visualisation (depth = 4). 

On one hand, the hyperbolic tool gives a focus to the 
datuadisplayed in the central pentagon 0 : 0. On the other hand, 
the tool gives the context with all data surrounding the central 
one. Then, the second technique we propose is the relative 
visualisation: we dissociated the pentagons of the display (the 
receiver) from the data which is displayed in. A data associated to 
a pentagon w’ : r’ can be displayed in a pentagon w : r. Of course 
the neighbourhood is kept. By bringing a data to the centre of the 
tiling, the user focuses on it. The distortion of the mapping gives 
the feeling of a zoom because the central pentagon is larger. In 
figure 8, user focuses on the data of pentagon 2 : 1. Some data not 
yet visible in figure 7 appear and some visible data disappear. 

 
Figure 8. relative visualisation (depth = 4). 

Various algorithms were developed to manage data [3] [4]. In 
particular, we provided the zooming algorithm to bring a data on 
top of region Rsrc in the central pentagon and to bring the central 
data in the pentagon on top of region Rdest. We denote this 
algorithm by {src::dest}. For example, figure 8 is obtained by 
applying zooming {2::4} to figure 7. 



3.2 The characters layout 
The idea is to consider a pentagon as a key and to consider a 
character as the data of a pentagon. We call layout, the 
assignment of characters to the keys. A layout is desirable if it is 
both predictable and fast. With a predictable layout, a moderately 
experienced user can guess at the interactions to make a desired 
character, and be right some of the time. In a fast layout, frequent 
characters correspond to fast access. A predictable layout helps 
the novice user and a fast layout helps the expert user. 

The clustering of the characters is crucial for a predictable layout. 
One of the most frequently used characters, the space, is 
associated to the central pentagon ( in figure 9). The predictable 
clustering of the characters was designed according to the vowels. 
This reveals a convenient and natural clustering of the characters: 

Let L = {Lk} with k ∈ {1..26} 
= { ABCDEFGHIJKLMNOPQRSTUVWXYZ } 

and V = {Vk} with k ∈ {1..5} 
= { AEIOU } 

The clusters Ci containing characters are defined by: 

 Ci = {Lk} as Lk ∈ [Vi , Vi+1[ with i ∈ {1..4}, k ∈ {1..26} 
and C5 = {Lk} as Lk ≥ V4 with k ∈ {1..26} 
Thus, the whole set C of clusters is defined by: 

 C = {Ck} with k ∈ {1..5} 
  = {ABCD, EFGH, IJKLMN, OPQRST, UVWXYZ} 

Cluster Ci with i ∈ {1..5} defines the characters of region Ri of 
our hyperbolic tool. The first character of Ci, the vowel, is 
grounded in the first pentagon of region Ri. The three next 
characters are grounded counter clockwise in the three pentagons 
of the next level. The process goes on from the fourth character if 
there are yet some characters in cluster Ci. 

 
Figure 9. Characters layout in the pentagrid. 

Figure 9 shows the pentagrid with this layout. Several possible 
layouts were considered for this design but they are a myriad of 
possible layouts. Future work may discover a better layout. 

3.3 The gesture interaction 
The focus and context aspect of the VirHKey involves a 
hierarchical exploration: the user interacts only with the five first 
pentagons of the regions. In this section we propose a fast, self 
disclosing Unistroke alphabet. Since a “flick” gesture is fast with 

a pen and easy to recognize, the alphabet of VirHKey consists of 
flicks as in T-Cube [15]. A flick has two important aspects, the 
starting point and the direction. The direction can be horizontal or 
diagonal, specifying the character of one of the five first 
pentagons (figure 10). The required accuracy, 2π/5 in radians, is 
lower than the 2π/8 of T-Cube. This is easier for users. 
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9π/5..π/5

3π/5..π

π..7π/5

7π/5..9π/5

a flick

 
Figure 10. The five flicks in the VirHKey. 

A flick is complete when a target typically 0.4 to 0.7 inches in 
diameter (depending to the setup) is reached. The corresponding 
zoom is triggered in the keyboard. We note Z the set of these 
possible zooms: 

 Z = {Zi} with i ∈ {1..5} 
  = {zoomA, zoomE, zoomI, zoomO, zoomU} 

zoomA is the zoom to ground the character which is on top of 
region R1 in the central pentagon. And so on for the other zooms. 
For example, a flick between π/5 and 3π/5 will trigger a zoomO. 
Any interactive system needs to give feedback to help the user 
understand, learn and use it. VirHKey enlists both optional visual 
and audio feedbacks. It gives feedback of the running flick which 
is displayed with a red edge directly on the keyboard (figure 11). 

When a flick is complete, the corresponding zoom is triggered 
and the VirHKey is modified thanks to zooming algorithm 
according to table 1. A sound can be played for a brief time too. 

Table 1. Mapping flick and zooming in the pentagrid. 

zoomA zoomE zoomI zoomO zoomU 

{1::3} {2::4} {3::5} {4::1} {5::2} 

From the initial state of the VirHKey, the first flick gives only 
access to the five vowels. More flicks are required for the other 
characters. A path P is a sequence of zooms to reach a character: 

Let P = (z1, z2, … , zn)n∈IΝ with zi ∈ Z. 

Figure 11 shows the two flicks to reach character ‘q’ and the 
visual cue provided to user. Thus, a gesture Gq attached to 
character ‘q’ is  which corresponds to the path Pq = (zoomO, 
zoomI). The gestures can be done on a separate touch sensitive 
surface (for example a tablet) or directly on the screen if it is 
touch sensitive (for example the screen of a TabletPC or a PDA). 
In this last case, the gesture has not to start in the disc of the 
VirHKey. The flicks are displayed in the centre of the VirHKey 
(figure 11) but user can do the gesture  where he wants on the 
screen: the spatial position of the pen compared to the position of 



the VirHKey has no importance for the gesture computation. The 
direction is the only important parameters. When the pen is lifted, 
the validation is automatically triggered. Then, the current 
character in the central pentagon is “typed” to the system and the 
VirHKey returns to the initial state for the next gesture. 

Li

Lk

Lk+1
Lk+2

Lk+3

Li

Lj a flick  
Fig. 12. The gesture properties of VirHKey. 

User can predict the gestures thanks to the characters layout. 
Figure 12 shows a typical situation: user comes from character Li 
and applied a flick to focus on character Lk. Then, if this character 
is not the right one, he can use the following properties to reach 
the next character: 

• The first flick in the counter clockwise direction with 
respect to the last one grounds the next character, Lk+1 in the 
central pentagon. The second and the third flick in the 
counter clockwise direction ground Lk+2 and Lk+3 
respectively. 

• The first flick in the clockwise direction grounds the 
previous character, Li in the central pentagon. It is the 
cancellation flick. 

• The second flick in the clockwise direction has no simple 
property. It is the alternative flick and the visual cue is 
needed in this case. 

Unfortunately, the cancellation flick is not so simple to 
implement. For example, zoomA is cancelled by zoomI but, 
according to table 1, zoomA is {1::3} and zoomI is {3::5}. The 
character in the central pentagon will be right but not the other 
ones modulo a rotation of 2π/5. For example, the character which 
was on top of region R1 should be on top of region R5. We must 
apply the zooms by taking into account the last one. In the 
previous example, the zoom is a zoomI but as the previous one 
was zoomA, it will correspond to a {3::1} denoted by zoomA-1 
instead of {3::5}. More generally, if z ∈ Z and z = {src::dest} 
then z-1={dest::src}. Table 2 shows the rules to interpret a zoom 
according to the previous one. 

Table 2. Contextual interpretation of the zooms. 

new
previous 

zoomA zoomE zoomI zoomO zoomU 

∅ zoomA zoomE zoomI zoomO zoomU 
zoomA zoomA zoomE zoomA-1 zoomO zoomU 
zoomE zoomA zoomE zoomI zoomE-1 zoomU 
zoomI zoomA zoomE zoomI zoomO zoomI-1 
zoomO zoomO-1 zoomE zoomI zoomO zoomU 
zoomU zoomA zoomU-1 zoomI zoomO zoomU 

To limit errors during gestures and to increase speed, the VirHKey 
takes only into account flicks which lead to a character. Thus, we 
avoid empty pentagons. For example, in the gesture , the 
last flick will not be triggered because the pentagon on the right 
of character ‘q’ is empty (figure 11). So, this gesture remains to 
gesture  of the character ‘q’. The user is able to do ampler 
gestures to reach quickly characters even with suppose 
complicated gestures. 

   
A B C D I J K L M N 

         
E F G H O P Q R S T 

 ●   
   

 space   U V W X Y Z 
Figure 13. The standard alphabet of VirHKey. 

For one character, the path is not unique but we have uniqueness 
if we do not consider path with alternative or cancellation flicks. 
Figure 13 shows this standard alphabet. At the opposite of Graffiti 
and co. there is no similarity between a gesture and the normal 
hand-printed character. This alphabet is Unistroke: one character 
is done with one gesture and each gesture has, at maximum, one 
shift of direction. 

The feedbacks are flick dependant: the gestures are analyzed flick 
by flick and not just at the end of the gesture. The user can refer 
to the visual feedbacks but if he remembers the gesture, he may 
make it directly without any helps. We expect that the feedbacks 
will help the user to learn swiftly the alphabet before to become 
unnecessary. 

4. USABILITY TESTS 
To evaluate the VirHKey, we are doing a usability study using the 
protocol described in [9]. The first goal is to show its immediate 
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Figure 11. Visual feedback for the ‘q’ character. 



usability: many consumers, discouraged by their initial experience 
and frustration, may never invest the required effort to be-come 
experts. Next, we try to exhibit the users’ improvements in entry 
speed and error rates from novice to expert level with a 
longitudinal study. 

4.1 Participants 
In longitudinal studies, fewer participants are usually engaged but 
over a long period of time. In this study, 5 participants from 22 to 
47 years old were involved, all being native French speakers. 
They all use desktop computers on a regular basis and they were 
well informed on the time commitment required for the 
experiment. 

4.2 Task and procedure 
The task was done during 20 sessions and each session lasted 
about 20 minutes. Each session contained several blocks of trials 
and each block contained 10 text phrases of about 25 characters 
each. These 10 phrases were randomly selected from a source file 
of 70 French sentences. They were not repeated within a block 
but repeats were allowed between blocks. Each participant 
completed 20 sessions. Sessions were separated by at least two 
hours but no more than two days. This was to simulate a regular 
use of the system while trying to avoid fatigue. This was a 
longitudinal study attempting to practice participants toward 
expert performance. Data collection included numerous 
measurements on user input. For each key tapped, the following 
data were collected: given Character and position in the phrase, 
user entered character, elapsed time (ms) from previous tap and 
error (1 if the user character was wrong; 0 if the user character 
was correct) 

The participants were asked to copy each phrase. The keyboard 
was in a 300x300 dots window and the audio and visual 
feedbacks were allowed. When an error occurred a prominent 
“click” was heard. They were asked to ignore errors and to carry 
on with the next correct character pointed at by the cursor. 
Typical experiment display is shown in figure 14 (left). 

Figure 14. Experiment screen and apparatus. 
All participants were first given instructions explaining the goal 
of the experiment and the task. They were asked specifically to 
aim for both entry speed and accuracy. Participants were 
constantly reminded to do their best. 

4.3 Apparatus 
The host system was an ACER TravelMate 370 with an Intel 
Centrino 1,5 Ghz processor running Microsoft Windows XP. The 
software was written in C++ under Micro-soft Visual C++. The 
display was a 12” CRT with 1024x768 pixels. The gestures were 

done on a separate tactile surface, a Wacom Volito (figure 14, 
right). 

4.4 Results and Discussion 
Although the task happens continuously, there is a small break in 
text entry when a new phrase is presented. The participants tend 
to read the phrase for a while and begin writing only after 
comprehending the phrase or at least the first few characters. We 
excluded the data on the first characters. 

The analysis of variance of text entry speed showed a significant 
effect of session (F19,40 = 15.15, p < .001). A Student test showed 
a significant speed difference between Nicolas and Kamel (t = 
−4.12, p-value < .0003). For novice, the average entry text speed 
is 6.60 mpm. This appears 5.8% slower than Graffiti for example 
[6]. This is not so bad because the alphabet is far from Latin one 
and must be learned. So, this result appears not as bad as it could 
have been. The average text entry rate for the VirHKey keyboard 
rises to 22.89 wpm by the 20th session. In average, the VirHKey 
is for example 9% faster than Graffiti [6]. Unfortunately, it is far 
from Unistroke idealistic speed. But after about 7 hours of 
practice, all participants had not become “experts” and the speed 
is always increasing. However, we expect that it will increase 
only few. 
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Figure 15. Text entry speed by session. 

An error was recorded when the user-entered character differed 
from the given character. An analysis of variance revealed no 
significant effect of session. This may have occurred because 
participants controlled their speed to limit their errors. The 
average error rate ranged from 2.80% for the 1st session to 5.87% 
for the 20th session. Thus, at the beginning, the average error rate 
is 69% better than Graffiti [6] and even better than EdgeWrite in 
spite of his seizure guide. In 16th session, the VirHKey presents 
only an error rate of 5.81% at 21.52 wpm the maximum speed of 
Graffiti. This is always 35% lower than the Graffiti error rate at 
this speed. Moreover, this error rate stays constant until the 
maximum speed in the 20th session. As for the text entry speed, a 
Student test showed a significant difference between Nicolas and 
Kamel (t = -3.59, p-value < .002). The faster participant, Nicolas, 
did significantly more errors than the slower one, Kamel. 
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Figure 16. Error rate by session. 
These results show very good performances both for speed and 
error rate. A more detailed analysis is actually done to measure 
user performances for each character. Figure 17 shows the speed 
entry rate for each character. 

0
0.2
0.4
0.6
0.8

1
1.2
1.4

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Last session

 
Figure 17. Time in seconds for each character. 

We can notice that the space gesture (the first in the X-axis) is 
quicker than any other gestures. Moreover, we can note that there 
are no significant differences for A, E, I, O and U gestures. The 
gestures with one flick are quicker than the gesture with two or 
three flicks. This is not very surprising. But, surprisingly, gestures 
with three flicks are similar in time to the gestures with two flicks. 
This is an important point: the position of a character in the tiling 
is not so important to do quick gestures except for the gestures 
with one flick. The bad performances for the K, Q, Y and Z 
characters can be explained by the low frequency of these 
characters in French language. 
Each participant filled a SUS-like questionnaire at the end of the 
20 sessions [2]. The agreement with each question is expressed 
from 1 to 5 (1 = strongly disagree, 5 = totally agree). Then we can 
compute a SU value in the range 0 and 100. Greater the value is, 
more the participant is satisfied. We obtained 71.50 for the 
average SU value which indicates a good satisfaction of the 
participants (see table 3). 

Table 3. SU-like questionnaire for the satisfaction of user. 
 Guillaume Isabelle Kamel NicolasThomas
I think I would like to use the 
VirHKey frequently 3 3 3 2 4 
I found the VirHKey 
unnecessarily complex 2 2 2 2 3 
I think the VirHKey was easy to 
use 3 3 4 4 4 
I think that I would need the 
support of a technical person to 
use the VirHKey 

1 1 2 1 1 

I would imagine that most people 
would learn to use the VirHKey 
quickly 

5 4 3 3 5 

I found the gestures of the 
VirHKey too hard to make 2 1 3 2 2 
I felt very confident using the 
VirHKey 4 5 3 4 4 
I needed to practice a lot before 
to could get going with the 
VirHKey 

2 2 3 3 2 

I am satisfied with the ease of 
entering characters with the 
VirHKey 

2 5 2 4 4 

I am satisfied by the speed to 
enter characters with the 
VirHKey 

3 5 4 5 5 

SU value 67.5 82.5 57.5 70 80 

First analyze shows that the participants were surprised by their 
performance in speed and by the ease of using. They were 
surprised by their learning curve too because they were sceptical 
at the beginning of the experiment: they felt no frustration. This 
point is very important for a symbolic keyboard with gestures far 
from the Latin alphabet on the contrary of Graffiti for example. 
They both inquired a better characters layout and improvements 
of the visual feedback. In particular, to avoid bounce, they all 
asked to remove the character from the central pentagon. This 
should reduce a lot the error rate because space character is the 
main source of errors. This is due to shaking when the pen 
touches the tactile surface. This improvement will be tested soon. 

5. CONCLUSION 
We proposed a new virtual keyboard using a gesture text entry 
method. The gestures are based on a static selection with flicks 
similarly to T-Cube but with a required angular accuracy of 2π/5 
in radians instead of 2π/8. The user interacts with an alphabet as 
simple as the Unistroke: each character is associated to one 
gesture which has, at maximum, one shift of direction. It 
guarantees swift interactions. The interaction can be done on a 
separate device or directly on the screen with a TabletPC or a 
PDA. 

On one hand, the VirHKey guides the novice user to learn the 
gestures with a focus and context visual feedback using little 
space on screen. We expect that thanks to this help, users will get 
over the initial complexity. On the other hand, the VirHKey 
allows high speeds for expert users. First usability tests confirm 
the superiority of the VirHKey compared to most other gesture 
keyboards as Graffiti, QuikWriting or T-Cube. They show quick 
learning and a text entry rate from 6.5 wpm (novice) to 25.8 wpm 
(expert) with an average error rate from 3.21% (novice) to 5.48% 
(expert). The qualitative evaluation shows the satisfaction of the 
users and the lack of frustration. 

6. PERSPECTIVES 
We are implementing the VirHKey on a PDA in VGA mode 
(figure 18, left). Then, usability tests will be conducted in mobile 
situation and more precise data analysis will be done too to 
measure how the movement and interruption of mobile use affect 
the system’s performance. Future work may measure usability 
without the visual feedback and propose some improvements. In 
particular, as we need no graphical relationship between a 
character and a gesture, we will try to find the best layout to 
match the most frequent characters with the easiest gestures to 
make. Unfortunately, these new layouts will be language 
dependant and no longer predictable. The new layouts will have 
to deal with other characters too: we only proposed to ground the 
letters but we have now to deal with numbers, punctuation, etc. 
We can for example add characters in the empty pentagons. 
Figure 18 (right) shows in light gray the available pentagons 
reachable with simple gestures. We can also use several discs as 
in the QuikWriting proposition, one for each purpose: accents, 
numerical characters, punctuation, uppercase and lowercase. The 
switch between discs can be associated to a pentagon ie. a gesture. 

Moreover, the VirHKey is not limited to the gesture interaction 
technique. We will propose soon other interaction techniques like 
a reduced physical keyboard. More details will be given in a 
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Figure 18. The PDA implementation and the complete alphabet of the VirHKey. 

forthcoming paper. Finally, more efficient way for training should 
be considered. 
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