
VirHKey: a VIRtual Hyperbolic KEYboard with gesture
interaction and visual feedback for mobile devices

Benoît Martin
LITA, University of Metz

Île du Saulcy
57045 Metz, Cedex 01, France

33 3 87 54 73 17
benoit.martin@univ-metz.fr

ABSTRACT
The VirHKey is a new text entry method for mobile devices using
a simple Unistroke-like alphabet. Gesture recognition is
accomplished not through pattern recognition but through
sequences of flicks with low required angular accuracy: 2π/5 in
radians. This means that the full stroke path is unimportant and
recognition is highly deterministic, enabling good accuracy. All
during the interaction, an optional visual feedback is provided at
least for the learning stage. This is done with a focus and context
display based on the hyperbolic geometry. To illustrate the
possibilities of the VirHKey, a prototype application was
developed and usability tests demonstrated the overall good
performances of the proposition with a text entry rate from 18 to
25 words per minute and a high satisfaction of users.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology, Input devices
and strategies, Interaction styles.

General Terms
Performance, Design, Experimentation, Human Factors.

Keywords
Focus and context, hyperbolic geometry, pen-based interaction,
gesture keyboard.

1. INTRODUCTION
With small mobile devices, classical keyboards are difficult or
even impossible to use. In this case, software keyboards give
many alternative solutions [10]. We can distinguish several kinds
of software keyboards from the interaction technique point of
view. In this paper, we focus on gesture keyboards: the interaction
is done by gestures with a pen and each gesture is interpreted as a
character or a command. Usually, the recognition is based on the
Latin alphabet or a dedicated one. In the first case, the recognition

is difficult and many errors can occur. Thus, the shapes of
characters are often simplified but gestures remain complicated
and user must use a gesture sheet to memorize them at least at the
learning stage. In the second case, a new alphabet is proposed.
Gestures can be simpler as in Unistroke proposition to improve
speed and reduce errors during recognition but users must invest
the required effort to learn this new alphabet. A visual feedback
helps sometimes user to do gestures as in QuikWriting proposition
but the gestures become more complicated and it is difficult not to
use the visual feedback. Thus, even if these keyboards have
proved to be natural and efficient in some classes of tasks [10],
there are many situations where the users have difficulties to learn
it or to use it.

We propose a new concept of gesture keyboard as simple as the
Unistroke one while providing a visual feedback. This truly
optional visual feedback helps user to learn progressively and
swiftly the alphabet at the learning stage. In next sections, we
present the existing propositions in order to show their
possibilities and their limits. Among the many encountered
difficulties, it is necessary to take into account the space available
to visualise the keyboard, the learning time and the accuracy
which is needed in gesture interactions. Then we present the
VirHKey project from the hyperbolic tool to the gesture
interaction techniques passing by the characters layout. Next, the
usability tests are described followed by the results. Finally, we
present our conclusion.

2. GESTURE KEYBOARDS
In gesture keyboards, the interaction is mainly done with a pen on
a tactile surface. We can distinguish two categories: the symbolic
keyboards and the target keyboards.

2.1 Symbolic keyboards
A symbolic keyboard uses gesture recognition to associate a
gesture to one and only one character. Unfortunately, the Latin
alphabet remains complicated: it needs always high computation
capacities and good accuracy in the gesture. Each symbolic
keyboard introduces a simplified alphabet. With Unistroke, a
character is obtained with only one gesture [7]. The alphabet was
designed for the simplicity to ease the learning, to minimize the
ambiguity between gestures and to improve speed. The most
frequent characters are associated to the simplest gestures (figure
1). No comparative study has been undertaken but an idealistic
text entry rate of 34 wpm (words per minute) was reported.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobileHCI'05, September 19–22, 2005, Salzburg, Austria.
Copyright 2005 ACM 1-59593-089-2/05/0009…$5.00.

Figure 1. Samples of Unistroke and Graffiti 2 alphabets.

Graffiti was introduced by Palm Computing for its PDAs [1]. The
majority of the characters are obtained with only one gesture but
not all as the ‘X’ (figure 1). It was clearly designed to reduce the
learning time: the gestures are close to the Latin alphabet but they
are much more complicated than the Unistroke ones. [6] reported
a text entry rate from 7 wpm (novice) to 21 wpm (expert) and
reported a 9% errors rate for both novice and expert users. At this
time Graffiti is a success and users appreciate the ease of learning
even to the prejudice of performance. Thus the new gesture
keyboards have now to show their ease to learning in comparison
to Graffiti.

Figure 2. Samples of EdgeWrite alphabet.
The last keyboard described here is EdgeWrite. It was conceived
to simplify the recognition and to need lower accuracy from the
user [16]. Its alphabet is Unistroke and it was designed from the
order by which the user passes in the four corners of a square. The
gesture looks like the corresponding Latin character (figure 2).
The errors are reduced because the interface is tangible: gestures
are done in a seizure guide which constraints the pen. [16]
reported a 18% better accuracy than Graffiti for novice users with
no significant difference in speed.

2.2 Target keyboards
A target keyboard uses gestures to reach a target or a zone
assigned to a character. All the characters are presented to the
user but if the display is incomplete, the characters are distributed
in different pages. A visual feedback is provided but after few
hours of practice, the visual feedback can become unnecessary.
From the interaction point of view, we distinguish the static
selection and the dynamic selection.

Figure 3. The layouts of T-Cube and Quikwriting.

With the static selection, the gesture associated to a character is
always the same. For example, T-Cube [15] uses hierarchic pie-
menus (figure 3). The gesture, a flick, uses a departure point and a
direction. The departure point is done in one of the first pie-menu
to indicate which sub pie-menu is concerned. The direction
indicates which character to select in the sub pie-menu. The
gestures are simple but an accuracy of 2π/8 in radians is required.
[15] indicated that reasonably fast text entry can be achieved. One

subject achieved 21 wpm but it appears difficult to learn.
Quikwriting works with continuous gestures on a 3×3 grid [13].
Characters are entered with gestures that begin in the centre cell
(figure 3). User moves to the cell which contains the desired
character. If the desired character is at the centre of the cell, it is
sufficient to go back directly to the centre cell (for example ‘i’).
On the contrary, if the user goes to one of the two adjacent cells
before to go back to centre cell, he obtains the next character in
the direction of the chosen adjacent cell (for example ‘u’).
Similarly, in the corners which contain 5 characters, user can go
in the second adjacent cells before to go back in the centre cell to
obtain the second next character in the direction of the chosen
adjacent cell (for example ‘k’). Letters that occur more frequently
have the shortest gestures which can be done with various
devices. With a pen, [8] reported a text entry rate always
improving of 17 wpm (expert) with errors correction.

Figure 4. The Dasher layout.

With the dynamic selection, the gesture which is associated to a
character varies according to the state of the keyboard. A visual
feedback is necessary. For example, in Dasher [15], the user
points where he wants to go and the display zooms where he
points. The world is painted with characters, so that any point he
zooms in corresponds to a piece of text. The user chooses what to
write by choosing where to zoom. Figure 4 shows the writing of
"hello_how_are_you". Of course, it requires sustained visual
attention from the user. For efficiency, Dasher uses prediction
rules and [9] reported text entry rate from 25 wpm (novice) to 35
wpm (expert) with a mouse.

3. THE VirHKey PROJECT
The VirHKey project for VIRtual Hyperbolic KEYboard uses the
pentagonal tiling of the hyperbolic space. Its aim is to provide an
alphabet as simple and efficient as Unistroke while helping user
with a visual feedback at the learning stage. To be easily adapted
to mobile devices, the visual feedback is based on the focus and
context technique to use little space on screen. In next sections,
we present the hyperbolic tool of the TYPHOON project which is
used as the basis of the VirHKey. Then, we propose a characters
layout before to describe the gesture technique.

3.1 Hyperbolic tool of the TYPHOON project
In the TYPHOON project (Tiling of the hYperbolic Plane for
Human-cOmputer inter-actiON) we developed a generic focus
and context tool by using the hyperbolic geometry. Even if this
technique has been already often used, it was never by using the
tiling of the hyperbolic plane.

3.1.1 Hyperbolic geometry and the tiling
Hyperbolic geometry is the result of replacing the parallel axiom
of Euclidean geometry with the alternative of axiom that through
a given point there are at least two lines parallel to a given line.
We shall use Poincaré’s disc model: the open unit disc U of the
Euclidean plane constitutes the points of the hyperbolic plane.
Lines are diameters or arcs of circles which are orthogonal to the
border of U. The distortion of the mapping between the infinite
hyperbolic plane and the open disc gives a good way to visualise
data. A regular tiling is a splitting of the space with a unique
generator polygon by translation or by reflection in sides to cover
the entire space. Figure 5 shows the pentagrid which is generated
from a central regular pentagon with an interior angle of π/2 in
radians.

Figure 5. The pentagrid.

The hyperbolic plane is split into basic regions Ri generated by
the reflection of the central polygon into the common sides. This
splitting generates a tree: nodes are pentagons and arcs are the
reflections. This tree is a spanning tree of the neighbourhood
graph: additional connections are represented in bold and dotted
lines (figure 6).

10

R1

R5 R4

R2

R3

3-nodes
2-nodes

Additional
connections
for the graph

Tiling tree

The root

Figure 6. The tiling tree and the neighbourhood graph.
As it was first shown [11], each pentagon of a region can be
identified by a unique number from the standard Fibonacci
numbering. By adding the number of the region, we number all
pentagons with a unique couple w : r with r the region and w the
Fibonacci number in this region. By extension, the central
polygon is 0 : 0. From this numbering, we can compute the
neighbourhood of all pentagons and explore the tiling without
additional data structures. Details can be found in [3] [4] [5] [12].

3.1.2 Hyperbolic tool for visualisation
The tiling can be used to visualize and to explore various types of
data. The main difficulty is to find how to distribute data in the

tiling. We note T the mapping function as T (w, r) gives the data
associated to pentagon w : r. The first technique to visualise the
data is the absolute visualisation: the data associated to pentagon
w : r is displayed in pentagon w : r. Figure 7 shows the result: the
data is just the number of the polygon and it is displayed by “w:r”
with w in decimal. In specific applications, data will be displayed
differently: text, colour, etc.

Figure 7. Absolute visualisation (depth = 4).

On one hand, the hyperbolic tool gives a focus to the
datuadisplayed in the central pentagon 0 : 0. On the other hand,
the tool gives the context with all data surrounding the central
one. Then, the second technique we propose is the relative
visualisation: we dissociated the pentagons of the display (the
receiver) from the data which is displayed in. A data associated to
a pentagon w’ : r’ can be displayed in a pentagon w : r. Of course
the neighbourhood is kept. By bringing a data to the centre of the
tiling, the user focuses on it. The distortion of the mapping gives
the feeling of a zoom because the central pentagon is larger. In
figure 8, user focuses on the data of pentagon 2 : 1. Some data not
yet visible in figure 7 appear and some visible data disappear.

Figure 8. relative visualisation (depth = 4).

Various algorithms were developed to manage data [3] [4]. In
particular, we provided the zooming algorithm to bring a data on
top of region Rsrc in the central pentagon and to bring the central
data in the pentagon on top of region Rdest. We denote this
algorithm by {src::dest}. For example, figure 8 is obtained by
applying zooming {2::4} to figure 7.

3.2 The characters layout
The idea is to consider a pentagon as a key and to consider a
character as the data of a pentagon. We call layout, the
assignment of characters to the keys. A layout is desirable if it is
both predictable and fast. With a predictable layout, a moderately
experienced user can guess at the interactions to make a desired
character, and be right some of the time. In a fast layout, frequent
characters correspond to fast access. A predictable layout helps
the novice user and a fast layout helps the expert user.

The clustering of the characters is crucial for a predictable layout.
One of the most frequently used characters, the space, is
associated to the central pentagon (in figure 9). The predictable
clustering of the characters was designed according to the vowels.
This reveals a convenient and natural clustering of the characters:

Let L = {Lk} with k ∈ {1..26}
= { ABCDEFGHIJKLMNOPQRSTUVWXYZ }

and V = {Vk} with k ∈ {1..5}
= { AEIOU }

The clusters Ci containing characters are defined by:

 Ci = {Lk} as Lk ∈ [Vi , Vi+1[with i ∈ {1..4}, k ∈ {1..26}
and C5 = {Lk} as Lk ≥ V4 with k ∈ {1..26}
Thus, the whole set C of clusters is defined by:

 C = {Ck} with k ∈ {1..5}
 = {ABCD, EFGH, IJKLMN, OPQRST, UVWXYZ}

Cluster Ci with i ∈ {1..5} defines the characters of region Ri of
our hyperbolic tool. The first character of Ci, the vowel, is
grounded in the first pentagon of region Ri. The three next
characters are grounded counter clockwise in the three pentagons
of the next level. The process goes on from the fourth character if
there are yet some characters in cluster Ci.

Figure 9. Characters layout in the pentagrid.

Figure 9 shows the pentagrid with this layout. Several possible
layouts were considered for this design but they are a myriad of
possible layouts. Future work may discover a better layout.

3.3 The gesture interaction
The focus and context aspect of the VirHKey involves a
hierarchical exploration: the user interacts only with the five first
pentagons of the regions. In this section we propose a fast, self
disclosing Unistroke alphabet. Since a “flick” gesture is fast with

a pen and easy to recognize, the alphabet of VirHKey consists of
flicks as in T-Cube [15]. A flick has two important aspects, the
starting point and the direction. The direction can be horizontal or
diagonal, specifying the character of one of the five first
pentagons (figure 10). The required accuracy, 2π/5 in radians, is
lower than the 2π/8 of T-Cube. This is easier for users.

zoomA
zoomE

zoomI

zoomO
zoomU

π/5..3π/5

9π/5..π/5

3π/5..π

π..7π/5

7π/5..9π/5

a flick

Figure 10. The five flicks in the VirHKey.

A flick is complete when a target typically 0.4 to 0.7 inches in
diameter (depending to the setup) is reached. The corresponding
zoom is triggered in the keyboard. We note Z the set of these
possible zooms:

 Z = {Zi} with i ∈ {1..5}
 = {zoomA, zoomE, zoomI, zoomO, zoomU}

zoomA is the zoom to ground the character which is on top of
region R1 in the central pentagon. And so on for the other zooms.
For example, a flick between π/5 and 3π/5 will trigger a zoomO.
Any interactive system needs to give feedback to help the user
understand, learn and use it. VirHKey enlists both optional visual
and audio feedbacks. It gives feedback of the running flick which
is displayed with a red edge directly on the keyboard (figure 11).

When a flick is complete, the corresponding zoom is triggered
and the VirHKey is modified thanks to zooming algorithm
according to table 1. A sound can be played for a brief time too.

Table 1. Mapping flick and zooming in the pentagrid.

zoomA zoomE zoomI zoomO zoomU

{1::3} {2::4} {3::5} {4::1} {5::2}

From the initial state of the VirHKey, the first flick gives only
access to the five vowels. More flicks are required for the other
characters. A path P is a sequence of zooms to reach a character:

Let P = (z1, z2, … , zn)n∈IΝ with zi ∈ Z.

Figure 11 shows the two flicks to reach character ‘q’ and the
visual cue provided to user. Thus, a gesture Gq attached to
character ‘q’ is which corresponds to the path Pq = (zoomO,
zoomI). The gestures can be done on a separate touch sensitive
surface (for example a tablet) or directly on the screen if it is
touch sensitive (for example the screen of a TabletPC or a PDA).
In this last case, the gesture has not to start in the disc of the
VirHKey. The flicks are displayed in the centre of the VirHKey
(figure 11) but user can do the gesture where he wants on the
screen: the spatial position of the pen compared to the position of

the VirHKey has no importance for the gesture computation. The
direction is the only important parameters. When the pen is lifted,
the validation is automatically triggered. Then, the current
character in the central pentagon is “typed” to the system and the
VirHKey returns to the initial state for the next gesture.

Li

Lk

Lk+1
Lk+2

Lk+3

Li

Lj a flick
Fig. 12. The gesture properties of VirHKey.

User can predict the gestures thanks to the characters layout.
Figure 12 shows a typical situation: user comes from character Li
and applied a flick to focus on character Lk. Then, if this character
is not the right one, he can use the following properties to reach
the next character:

• The first flick in the counter clockwise direction with
respect to the last one grounds the next character, Lk+1 in the
central pentagon. The second and the third flick in the
counter clockwise direction ground Lk+2 and Lk+3
respectively.

• The first flick in the clockwise direction grounds the
previous character, Li in the central pentagon. It is the
cancellation flick.

• The second flick in the clockwise direction has no simple
property. It is the alternative flick and the visual cue is
needed in this case.

Unfortunately, the cancellation flick is not so simple to
implement. For example, zoomA is cancelled by zoomI but,
according to table 1, zoomA is {1::3} and zoomI is {3::5}. The
character in the central pentagon will be right but not the other
ones modulo a rotation of 2π/5. For example, the character which
was on top of region R1 should be on top of region R5. We must
apply the zooms by taking into account the last one. In the
previous example, the zoom is a zoomI but as the previous one
was zoomA, it will correspond to a {3::1} denoted by zoomA-1
instead of {3::5}. More generally, if z ∈ Z and z = {src::dest}
then z-1={dest::src}. Table 2 shows the rules to interpret a zoom
according to the previous one.

Table 2. Contextual interpretation of the zooms.

new
previous

zoomA zoomE zoomI zoomO zoomU

∅ zoomA zoomE zoomI zoomO zoomU
zoomA zoomA zoomE zoomA-1 zoomO zoomU
zoomE zoomA zoomE zoomI zoomE-1 zoomU
zoomI zoomA zoomE zoomI zoomO zoomI-1
zoomO zoomO-1 zoomE zoomI zoomO zoomU
zoomU zoomA zoomU-1 zoomI zoomO zoomU

To limit errors during gestures and to increase speed, the VirHKey
takes only into account flicks which lead to a character. Thus, we
avoid empty pentagons. For example, in the gesture , the
last flick will not be triggered because the pentagon on the right
of character ‘q’ is empty (figure 11). So, this gesture remains to
gesture of the character ‘q’. The user is able to do ampler
gestures to reach quickly characters even with suppose
complicated gestures.

A B C D I J K L M N

E F G H O P Q R S T

 ●

 space U V W X Y Z
Figure 13. The standard alphabet of VirHKey.

For one character, the path is not unique but we have uniqueness
if we do not consider path with alternative or cancellation flicks.
Figure 13 shows this standard alphabet. At the opposite of Graffiti
and co. there is no similarity between a gesture and the normal
hand-printed character. This alphabet is Unistroke: one character
is done with one gesture and each gesture has, at maximum, one
shift of direction.

The feedbacks are flick dependant: the gestures are analyzed flick
by flick and not just at the end of the gesture. The user can refer
to the visual feedbacks but if he remembers the gesture, he may
make it directly without any helps. We expect that the feedbacks
will help the user to learn swiftly the alphabet before to become
unnecessary.

4. USABILITY TESTS
To evaluate the VirHKey, we are doing a usability study using the
protocol described in [9]. The first goal is to show its immediate

zoomO

{4::1}

zoomI

{3::5}

Figure 11. Visual feedback for the ‘q’ character.

usability: many consumers, discouraged by their initial experience
and frustration, may never invest the required effort to be-come
experts. Next, we try to exhibit the users’ improvements in entry
speed and error rates from novice to expert level with a
longitudinal study.

4.1 Participants
In longitudinal studies, fewer participants are usually engaged but
over a long period of time. In this study, 5 participants from 22 to
47 years old were involved, all being native French speakers.
They all use desktop computers on a regular basis and they were
well informed on the time commitment required for the
experiment.

4.2 Task and procedure
The task was done during 20 sessions and each session lasted
about 20 minutes. Each session contained several blocks of trials
and each block contained 10 text phrases of about 25 characters
each. These 10 phrases were randomly selected from a source file
of 70 French sentences. They were not repeated within a block
but repeats were allowed between blocks. Each participant
completed 20 sessions. Sessions were separated by at least two
hours but no more than two days. This was to simulate a regular
use of the system while trying to avoid fatigue. This was a
longitudinal study attempting to practice participants toward
expert performance. Data collection included numerous
measurements on user input. For each key tapped, the following
data were collected: given Character and position in the phrase,
user entered character, elapsed time (ms) from previous tap and
error (1 if the user character was wrong; 0 if the user character
was correct)

The participants were asked to copy each phrase. The keyboard
was in a 300x300 dots window and the audio and visual
feedbacks were allowed. When an error occurred a prominent
“click” was heard. They were asked to ignore errors and to carry
on with the next correct character pointed at by the cursor.
Typical experiment display is shown in figure 14 (left).

Figure 14. Experiment screen and apparatus.
All participants were first given instructions explaining the goal
of the experiment and the task. They were asked specifically to
aim for both entry speed and accuracy. Participants were
constantly reminded to do their best.

4.3 Apparatus
The host system was an ACER TravelMate 370 with an Intel
Centrino 1,5 Ghz processor running Microsoft Windows XP. The
software was written in C++ under Micro-soft Visual C++. The
display was a 12” CRT with 1024x768 pixels. The gestures were

done on a separate tactile surface, a Wacom Volito (figure 14,
right).

4.4 Results and Discussion
Although the task happens continuously, there is a small break in
text entry when a new phrase is presented. The participants tend
to read the phrase for a while and begin writing only after
comprehending the phrase or at least the first few characters. We
excluded the data on the first characters.

The analysis of variance of text entry speed showed a significant
effect of session (F19,40 = 15.15, p < .001). A Student test showed
a significant speed difference between Nicolas and Kamel (t =
−4.12, p-value < .0003). For novice, the average entry text speed
is 6.60 mpm. This appears 5.8% slower than Graffiti for example
[6]. This is not so bad because the alphabet is far from Latin one
and must be learned. So, this result appears not as bad as it could
have been. The average text entry rate for the VirHKey keyboard
rises to 22.89 wpm by the 20th session. In average, the VirHKey
is for example 9% faster than Graffiti [6]. Unfortunately, it is far
from Unistroke idealistic speed. But after about 7 hours of
practice, all participants had not become “experts” and the speed
is always increasing. However, we expect that it will increase
only few.

5,00

10,00

15,00

20,00

25,00

30,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Session

Guillaume
Isabelle
Kamel
Nicolas
Thomas
Average

W
or

ds
 p

er
 m

in
ut

e
(w

pm
)

Figure 15. Text entry speed by session.

An error was recorded when the user-entered character differed
from the given character. An analysis of variance revealed no
significant effect of session. This may have occurred because
participants controlled their speed to limit their errors. The
average error rate ranged from 2.80% for the 1st session to 5.87%
for the 20th session. Thus, at the beginning, the average error rate
is 69% better than Graffiti [6] and even better than EdgeWrite in
spite of his seizure guide. In 16th session, the VirHKey presents
only an error rate of 5.81% at 21.52 wpm the maximum speed of
Graffiti. This is always 35% lower than the Graffiti error rate at
this speed. Moreover, this error rate stays constant until the
maximum speed in the 20th session. As for the text entry speed, a
Student test showed a significant difference between Nicolas and
Kamel (t = -3.59, p-value < .002). The faster participant, Nicolas,
did significantly more errors than the slower one, Kamel.

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

16,00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Session

Guillaume
Isabelle
Kamel
Nicolas
Thomas
Average

Er
ro

rs
 (%

)

Figure 16. Error rate by session.
These results show very good performances both for speed and
error rate. A more detailed analysis is actually done to measure
user performances for each character. Figure 17 shows the speed
entry rate for each character.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Last session

Figure 17. Time in seconds for each character.

We can notice that the space gesture (the first in the X-axis) is
quicker than any other gestures. Moreover, we can note that there
are no significant differences for A, E, I, O and U gestures. The
gestures with one flick are quicker than the gesture with two or
three flicks. This is not very surprising. But, surprisingly, gestures
with three flicks are similar in time to the gestures with two flicks.
This is an important point: the position of a character in the tiling
is not so important to do quick gestures except for the gestures
with one flick. The bad performances for the K, Q, Y and Z
characters can be explained by the low frequency of these
characters in French language.
Each participant filled a SUS-like questionnaire at the end of the
20 sessions [2]. The agreement with each question is expressed
from 1 to 5 (1 = strongly disagree, 5 = totally agree). Then we can
compute a SU value in the range 0 and 100. Greater the value is,
more the participant is satisfied. We obtained 71.50 for the
average SU value which indicates a good satisfaction of the
participants (see table 3).

Table 3. SU-like questionnaire for the satisfaction of user.
 Guillaume Isabelle Kamel NicolasThomas
I think I would like to use the
VirHKey frequently 3 3 3 2 4
I found the VirHKey
unnecessarily complex 2 2 2 2 3
I think the VirHKey was easy to
use 3 3 4 4 4
I think that I would need the
support of a technical person to
use the VirHKey

1 1 2 1 1

I would imagine that most people
would learn to use the VirHKey
quickly

5 4 3 3 5

I found the gestures of the
VirHKey too hard to make 2 1 3 2 2
I felt very confident using the
VirHKey 4 5 3 4 4
I needed to practice a lot before
to could get going with the
VirHKey

2 2 3 3 2

I am satisfied with the ease of
entering characters with the
VirHKey

2 5 2 4 4

I am satisfied by the speed to
enter characters with the
VirHKey

3 5 4 5 5

SU value 67.5 82.5 57.5 70 80

First analyze shows that the participants were surprised by their
performance in speed and by the ease of using. They were
surprised by their learning curve too because they were sceptical
at the beginning of the experiment: they felt no frustration. This
point is very important for a symbolic keyboard with gestures far
from the Latin alphabet on the contrary of Graffiti for example.
They both inquired a better characters layout and improvements
of the visual feedback. In particular, to avoid bounce, they all
asked to remove the character from the central pentagon. This
should reduce a lot the error rate because space character is the
main source of errors. This is due to shaking when the pen
touches the tactile surface. This improvement will be tested soon.

5. CONCLUSION
We proposed a new virtual keyboard using a gesture text entry
method. The gestures are based on a static selection with flicks
similarly to T-Cube but with a required angular accuracy of 2π/5
in radians instead of 2π/8. The user interacts with an alphabet as
simple as the Unistroke: each character is associated to one
gesture which has, at maximum, one shift of direction. It
guarantees swift interactions. The interaction can be done on a
separate device or directly on the screen with a TabletPC or a
PDA.

On one hand, the VirHKey guides the novice user to learn the
gestures with a focus and context visual feedback using little
space on screen. We expect that thanks to this help, users will get
over the initial complexity. On the other hand, the VirHKey
allows high speeds for expert users. First usability tests confirm
the superiority of the VirHKey compared to most other gesture
keyboards as Graffiti, QuikWriting or T-Cube. They show quick
learning and a text entry rate from 6.5 wpm (novice) to 25.8 wpm
(expert) with an average error rate from 3.21% (novice) to 5.48%
(expert). The qualitative evaluation shows the satisfaction of the
users and the lack of frustration.

6. PERSPECTIVES
We are implementing the VirHKey on a PDA in VGA mode
(figure 18, left). Then, usability tests will be conducted in mobile
situation and more precise data analysis will be done too to
measure how the movement and interruption of mobile use affect
the system’s performance. Future work may measure usability
without the visual feedback and propose some improvements. In
particular, as we need no graphical relationship between a
character and a gesture, we will try to find the best layout to
match the most frequent characters with the easiest gestures to
make. Unfortunately, these new layouts will be language
dependant and no longer predictable. The new layouts will have
to deal with other characters too: we only proposed to ground the
letters but we have now to deal with numbers, punctuation, etc.
We can for example add characters in the empty pentagons.
Figure 18 (right) shows in light gray the available pentagons
reachable with simple gestures. We can also use several discs as
in the QuikWriting proposition, one for each purpose: accents,
numerical characters, punctuation, uppercase and lowercase. The
switch between discs can be associated to a pentagon ie. a gesture.

Moreover, the VirHKey is not limited to the gesture interaction
technique. We will propose soon other interaction techniques like
a reduced physical keyboard. More details will be given in a

w
r

1 2 3 4 5 6 7 8 9 10 11

1 a b c d

2 e f g h

3 i j k l m n

4 o p q r s t

5 u v w x y z

Figure 18. The PDA implementation and the complete alphabet of the VirHKey.

forthcoming paper. Finally, more efficient way for training should
be considered.

7. ACKNOWLEDGEMENTS
The author gratefully acknowledges M. Margenstern for helpfully
hyperbolic discussions. Special thanks to X. Richez for his work
on bibliography. This work was partly supported by the MICOLE
European project (IST-2003-51152).

8. REFERENCES
[1] Blickenstorfer, C. H. Graffiti: Wow!!!! Pen Computing

Magazine. January, pp. 30-31, 1995.
[2] Brooke, J. SUS - A quick and dirty usability scale.

http://www.cee.hw.ac.uk/~ph/sus.html
[3] Chelghoum K., Margenstern M., Martin B. and Pecci I.

Cellular Automata in the pentagrid of the hyperbolic plane:
tools for interactions. Publications of LITA, technical report,
2004-101, 63 pages, January 2004.

[4] Chelghoum, K., Margenstern, M., Martin, B. and Pecci, I.
Tools for implementing cellular automata in grid {7, 3} of
the hyperbolic plane. DMCS, Turku, Finland, July, 2004.

[5] Chelghoum, K., Margenstern, M., Martin, B. and Pecci, I.
Cellular automata in the hyper-bolic plane: proposal for a
new environment. ACRI, Amsterdam, The Netherlands,
October 25-27, 2004.

[6] Fleetwood, M. D., Byrne, M. D., Centgraf, P., Dudziak, K.
Q., Lin, B. and Mogilev, D. An Evaluation of Text-Entry in
Palm OF Graffiti and the Virtual Keyboard. Proceedings of
the HFES 46th Annual Meeting, pp. 617-621,
http://chil.rice.edu/fleet/documents/HFES02palm.pdf.

[7] Goldberg, D. and Richardson, C. Touch-typing with a stylus.
Proceedings of INTERCHI’93, New York, pp. 80-87, 1993.

[8] Isokoski, P. and Raisamo, R. Quikwriting as a Multi-device
Text Entry Method. Pro-ceedings of NordiCHI 2004, ACM
Press, Tampere, pp. 105-108, 2004.

[9] MacKenzie, I. S., and Zhang, S. X. The Design and
Evaluation of a High-Performance Soft Keyboard.
Proceedings of CHI’99, New York, pp. 25-31, 1999.

[10] MacKenzie, I. S., and Soukoreff, R. W. Text Entry for
Mobile Computing: Models and Methods, theory and
Practice. Human Computer Interaction, 17, pp. 147-198,
2002.

[11] Margenstern M. New tools for Cellular Automata in the
Hyperbolic Plane. Journal of Universal Computer Science,
Vol. 6, issue 12 (2000), pp.1226-1252.

[12] Margenstern M. Cellular automata in the hyperbolic plane.
Publications of GIFM, technical report, 99-103, ISBN 2-
9511539-6-1, 34 pages, December 1999.

[13] Perlin, K. Quikwriting: Continuous stylus-based text entry.
Proceedings of UIST'98. New York: ACM, pp. 215-216,
1998.

[14] Venolia, D. and Neiberg, F. T-Cube: A fast, self disclosing
pen-based alphabet. Proceedings of CHI’94, New York, pp.
265-270, 1994.

[15] Ward, D. J., Blackwell, A. F. and MacKay, D. J. C. Dasher -
A data entry interface using continuous gestures and
language models. Proceedings of UIST 2000. New York:
ACM, pp. 129-137, 2000.

[16] Wobbrock, J.O., Myers, B.A., and Kembel, J.A. EdgeWrite:
A Stylus-Based Text Entry Method Designed for High
Accuracy and Stability of Motion. Proceedings of UIST'03,
Vancouver, B.C., November, pp. 61-70, 2003.

